

Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation

Xuandong Zhao UC Santa Barbara xuandongzhao@cs.ucsb.edu

Zhiguo Yu Microsoft zhiguo.yu@microsoft.com Ming Wu Microsoft mingwu@microsoft.com Lei Li UC Santa Barbara leili@cs.ucsb.edu

Sentence Embedding

Good sentence representations have wide applications in NLP:

• web search, question answering, knowledge inference, machine translation...

Sentence embedding model:

• Input: sentence

Output: fixed-length continuous vector

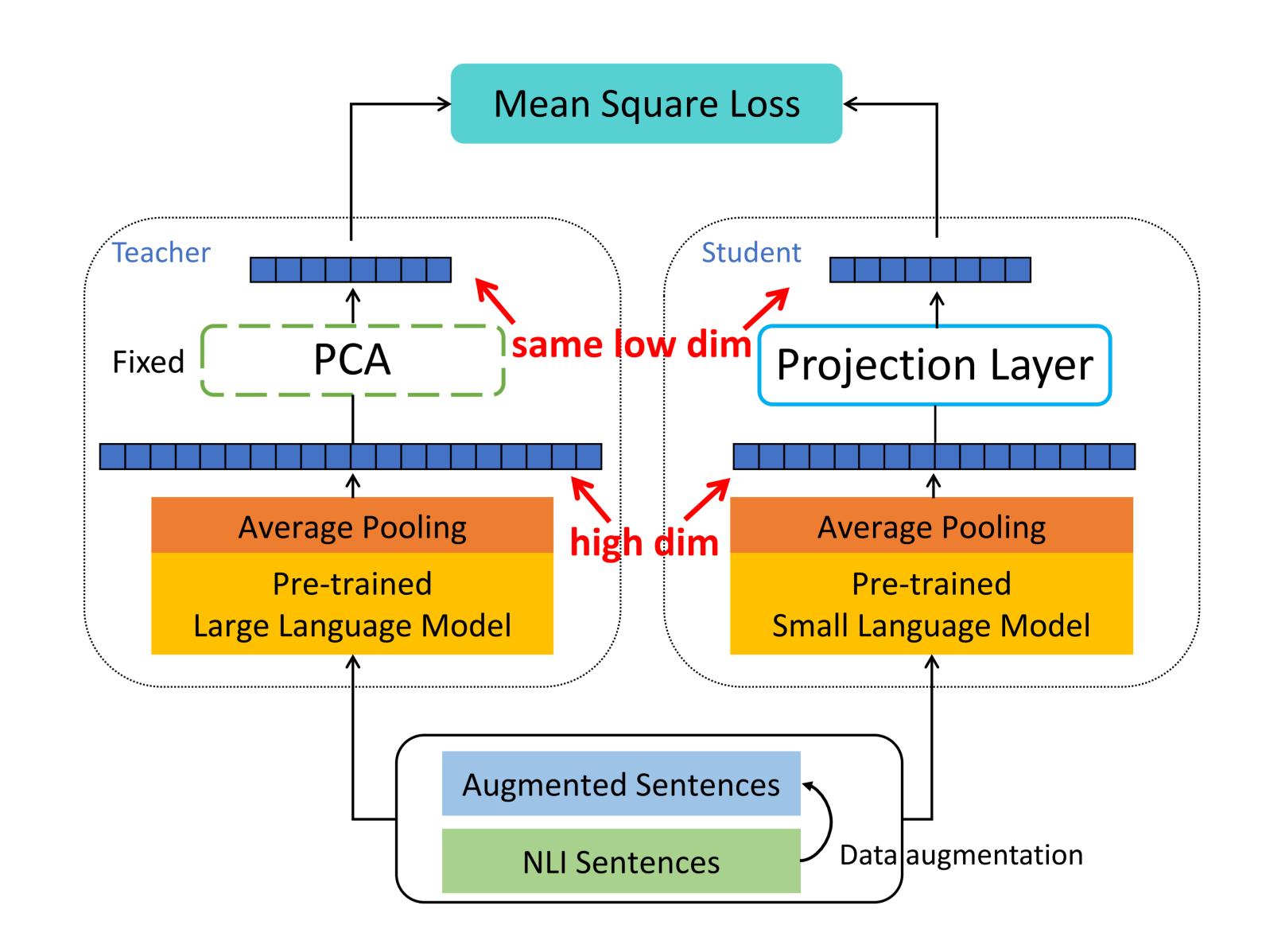
sentence embedding model

Existing Models are Big!

State-of-the-Art Sentence Embedding Models:

- Sentence-BERT (SBERT) (Reimers and Gurevych, 2019)
- SimCSE (Gao et al., 2021)

•


Large Model Size

Sentence-BERT_{base}: 109M SimCSE-RoBERTa_{large}: 355M

Large Representation Size Sentence-BERT_{base}: **768-dim** SimCSE-RoBERTa_{large}: **1024-dim**

Require large memory and suffer from high latency

Homomorphic Projective Distillation

Experiments

Tasks

- Semantic Textual Similarity (STS) Task
- Semantic Retrieval (SR) Task

Data

- SNLI and MNLI dataset
- Data augmentation: WordNet substitution and back translation

Model

- Teacher: SimCSE-MPNet & SimCSE-RoBERTa_{large}
- Student: MiniLM & TinyBERT

Results

STS Task (HPD-MiniLM vs SimCSE-RoBERTa_{large})

- 97.7% Spearman's correlation performance
- 7 times higher speed
- 6.5% of parameter

Model	STS Avg.	Size	Dim	Speed		
Large models						
$SBERT_{base}$	74.89	109M	768	993		
SRoBERTa _{large}	76.68	355M	1024	385		
SimCSE-MPNet •	82.75	109M	768	986		
SimCSE-RoBERTa _{large}	83.76	355M	1024	291		
Backbone for compact model: TinyBERT						
SimCSE-TinyBERT	78.78	14M	312	2650		
+Projection-128	78.12	14 M	128	2604		
+Whitening-128	78.74	14 M	128	2612		
HPD-128 (Teacher: ♠)	80.99	14 M	128	2608		
HPD-128 (Teacher: 4)	81.02	14 M	128	2609		
Backbone for compact model: MiniLM						
SimCSE-MiniLM	77.16	23M	384	2031		
+Projection-128	77.25	23M	128	2022		
+Whitening-128	77.28	23M	128	2015		
HPD-128 (Teacher: ♠)	81.20	23M	128	2025		
HPD-128 (Teacher: 4)	81.80	23M	128	2024		

SR Task (HPD-TinyBERT vs SimCSE-RoBERTa_{large})

- Competitive MRR performance
- Reduce the retrieval time by **8.2x**
- Reduce the memory usage by **8.0x**

Model	MRR	Time	Mem
HPD-TinyBERT-128	0.613	63.1	42.61
HPD-TinyBERT-256	0.616	130.4	85.22
HPD-TinyBERT-312	0.615	165.4	103.86
HPD-MiniLM-128	0.610	68.6	42.61
HPD-MiniLM-256	0.615	132.1	85.22
HPD-MiniLM-384	0.612	194.4	127.83
SimCSE-MPNet-768	0.671	385.8	255.66
SimCSE-RoBERTa _{large} -1024	0.670	518.0	340.88

References

Nils Reimers and Iryna Gurevych. Sentencebert: Sentence embeddings using siamese bertnetworks. EMNLP 2019

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence embeddings. EMNLP 2021

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. Whitening sentence representations for better semantics and faster retrieval. ArXiv, abs/2103.15316

https://github.com/XuandongZhao/HPD

